Combinan imágenes en 3D e inteligencia artificial para diagnosticar el grado de afección del párkinson

Un grupo de investigación de la UCO desarrolla un algoritmo matemático para el diagnóstico de distintos estadios del Párkinson, una herramienta de apoyo a las decisiones médicas que podría ayudar a mejorar los tratamientos contra esta enfermedad

cf95284bad0f5ee6ec25d7850cf53604_L_opt

Una nueva herramienta desarrollada por la Universidad de Córdoba en colaboración con la Unidad de Medicina Nuclear del Hospital Reina Sofía, que dirige el doctor Juan Antonio Vallejo, podría permitir al personal sanitario diagnosticar a partir de ahora distintos grados de afección del párkinson, una enfermedad que, según los datos que maneja la Organización Mundial de la Salud (OMS) afecta a 7 millones de personas en todo el mundo.

Hasta la fecha, según explica el investigador del grupo AYRNA Javier Barbero, "la mayoría de diagnósticos sólo distingue si el paciente padece o no esta enfermedad". El equipo de investigación ha desarrollado un sistema que permite especificar la fase en la que se encuentra, distinguiendo entre cuatro tipos de estadios diferentes en función de la gravedad.

Concretamente, esta nueva metodología combina inteligencia artificial y el uso de imágenes en tres dimensiones de la zona del cerebro en las que se produce la degeneración neuronal. Para ello, el equipo de investigación ha analizado voxel a voxel - el equivalente al pixel en 3D- más de medio millar de fotografías cerebrales de personas con síntomas compatibles con la enfermedad. El resultado es un algoritmo matemático que, tras haber procesado toda esta información, es capaz de estimar, una vez escaneada la imagen del cerebro del paciente, el grado de afectación de la enfermedad en función del daño neuronal.

"La nueva herramienta realiza esta estimación de forma automática, un diagnóstico inicial que, por supuesto, luego tendrá que certificar el personal médico con las imágenes delante", explica Pedro Antonio Gutiérrez, otro de los autores del estudio junto a César Hervás, Antonio Durán y Julio Camacho.

En este sentido, tal y como destaca el investigador, el algoritmo es capaz de determinar "qué zonas escaneadas del cerebro son las más importantes y, por tanto, en las que el personal especializado debe centrar su atención para confirmar el diagnostico", pero, ¿por qué hay zonas más importantes que otras?

La respuesta: en la dopamina

Durante la enfermedad del párkinson se produce una pérdida de densidad de las proteínas encargadas de transportar la dopamina, un neurotransmisor esencial en el control del movimiento. Precisamente, estas imágenes en 3D son capaces de detectar la densidad de estas proteínas y establecer los lugares cerebrales en las que se encuentran, por ello, su localización ofrece pistas sobre la gravedad de la enfermedad.

El trabajo, de esta forma, "no busca sustituir el criterio del personal especializado sino ofrecer un apoyo en la toma de decisiones médicas", explica César Hervás, investigador principal del grupo AYRNA. En cualquier caso, establecer con mayor exactitud la fase en la que se encuentra esta afección podría ayudar a ajustar la cantidad de medicación necesaria y determinar, así, un mejor tratamiento para una enfermedad crónica que, si bien no tiene cura como tal a día de hoy, ha mejorado notablemente su pronóstico gracias al avance de la neurología y al desarrollo de nuevos fármacos.

El proceso, además, ha sido validado a través de dos metodologías diferentes, publicadas ambas en revistas científicas. La primera de ellas emplea técnicas clásicas de clasificación ordinal, mientras que la segunda se basa en las denominadas redes neuronales convolucionales, un tipo de modelos de inteligencia artificial muy efectivos para tareas de visión como la clasificación de imágenes.